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Calculus with no math

When did you last use calculus on the job? My guess is never.

So why do all the control theory textbooks bombard us with equations and 
expect us to understand how that relates to our real world processes?

In these days of computer aided design and analysis tools – the need to solve a 
differential equation has been all but eliminated. This means that most 
engineers have lost touch with the concept of calculus, and how it applies to 
the real world.

This is a shame because in many engineering disciplines and particularly in 
process control – the ability to visualise a problem mathematically is what 
really separates the real pros from the rest of the crowd.

In fact even the humble PID contains those scary sounding calculus terms 
Integral and Derivative.

This section aims to give you a feel for what these terms really mean. This will 
give you a real edge when understanding what’s going on in your controller. 

Derivatives

Go into the control room of a process plant and ask the operator:

“What’s the derivative of reactor 4’s pressure?”

And the response will typically be:

“Bugger off smart arse!”

However go in and ask:

“What’s the rate of change of reactor 4’s pressure?”

And the operator will examine the pressure trend and say something like:

“About 5 PSI every 10 minutes”

He’s just performed calculus on the pressure trend! (don’t tell him though or 
he’ll want a pay rise)
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So derivative is just a mathematical term meaning rate-of-change. That’s all 
there is to it.

Testing your understanding
Suppose you have a box of electronics that calculates the derivative of its input 
signal. Its output is connected to an analogue meter which reads zero when 
vertical, negative to the left and positive to the right.

Look at the diagram below and draw on it where the meter would be pointing 
for each of the 4 input signals.

PTO for the answer…
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Were you right?

If not – remember that the absolute value of the input signal does not matter, 
all that matters is whether it is changing through time, and if so in which 
direction:

 If the input signal is not changing the output will be zero.

 If the input signal is increasing linearly, the output will be positive and 
stationary. 
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 If the input signal is decreasing linearly, the output will be negative and 
stationary.

 If the input signal is getting steeper with time, then the meter will be 
positive and moving to the right.

And so on.

If you understand these concepts, then you know everything you need to about 
differential calculus in order to understand the PID algorithm.
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Integrals

Is it any wonder that so many people run scared from the concept of integrals 
and integration, when this is a typical definition?

What the!?!?

If you understood that you are a smarter person than me.

Here’s a plain English definition:

The integral of a signal is the sum of all the instantaneous values that the 
signal has been, from whenever you started counting until you stop counting.

So if you are to plot your signal on a trend and your signal is sampled every 
second, and let’s say you are measuring temperature. If you were to 
superimpose the integral of the signal over the first 5 seconds – it would look 
like this:
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The green line is your temperature, the red circles are where your control 
system has sampled the temperature and the blue area is the integral of the 
temperature signal. It is the sum of the 5 temperature values over the time 
period that you are interested in. In numerical terms it is the sum of the areas 
of each of the blue rectangles: 

(13 x 1)+(14x1)+(13x1)+(12x1)+(11x1) = 63 °C s

The curious units (degrees Celsius x seconds) are because we have to multiply a 
temperature by a time – but the units aren’t important.

As you can probably remember from school –the integral turns out to be the 
area under the curve. When we have real world systems, we actually get an 
approximation to the area under the curve, which as you can see from the 
diagram gets better, the faster we sample.

So let’s go back to our black boxes to check our intuitive understanding. This 
time we have boxes that take the input signal, calculate the integral, and 
output the value to a centre-zero meter.

What will the meters read for these 3 inputs?
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PTO for the answer…
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Were you correct? If not – remember that the meter will only be pointing to 
zero if the area under the signal is zero, or if the signal has covered exactly the 
same area above the x-axis as below it(because when it is below the x-axis the 
area counts as negative).  

If the area under the signal is increasing – the meter will get more and more 
positive.

If the signal is only under the x-axis then the meter will get more and more 
negative as the signal clocks up more and more negative area.

Also if the signal is horizontal (i.e. constant) then the area is increasing at a 
uniform rate, so the output signal will do the same.

If the meter needle is stationary – all this tells us is that the input signal is at 
zero for that moment in time.  If it is positive and stationary, then that tells us 
that it is zero at this moment, but in the past it must have been more positive 
than negative.
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 If you are happy with these concepts that you have all the understanding you 
need to understand how the PID algorithm works.
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Feedback Control

Here is the classic block diagram of a process under PID Control.

What’s going on this diagram?

The Setpoint (SP) is the value that we want the process to be. 

For example, the temperature control system in our house may have a SP of 
22°C. This means that 

“we want the heating and cooling process in our house to achieve a steady 
temperature of as close to 22°C as possible”

The PID controller looks at the setpoint and compares it with the actual value 
of the Process Variable (PV). Back in our house, the box of electronics that is 
the PID controller in our Heating and Cooling system looks at the value of the 
temperature sensor in the room and sees how close it is to 22°C.

If the SP and the PV are the same – then the controller is a very happy little 

However, if there is a disparity between the SP and the PV we have an error 
and corrective action is needed. In our house this will either be cooling or 
heating depending on whether the PV is higher or lower than the SP 
respectively.

Let’s imagine the temperature PV in our house is higher than the SP. It is too 
hot. The air-con is switched on and the temperature drops.

box. It doesn’t have to do anything, it will leave its output where it is.
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The sensor picks up the lower temperature, feeds that back to the controller, 
the controller sees that the “temperature error” is not as great because the PV 
(temperature) has dropped and the air con is turned down a little. 

This process is repeated until the house has cooled down to 22°C and there is 
no error.

Then a disturbance hits the system and the controller has to kick in again.

In our house the disturbance may be the sun beating down on the roof, raising 
the temperature of the air inside.

So that’s a really, really basic overview of a simple feedback control system. 
Sounds dead simple eh? 
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Understanding the controller

Unfortunately, in the real world we need a controller that is a bit more 
complicated than the one described above, if we want top performance form 
our loops. To understand why, we will be doing some “thought experiments” 
where we are the controller.

When we have gone through these thought experiments we will appreciate why 
a PID algorithm is needed and why/how it works to control the process.

We will be using the analogy of changing lanes on a freeway on a windy day. 
We are the driver, and therefore the controller of the process of changing the 
car’s position. 

Here’s the Block Diagram we used before, with the labels changed to represent 
the car-on-windy-freeway control loop.

Notice how important closing the feedback loop is. If we removed the feedback 
loop we would be in “open loop control”, and would have to control the car’s 
position with our eyes closed!

Thankfully we are under “Closed loop control” -using our eyes for position 
feedback.

As we saw in the house-temperature example the controller takes the both the 
PV and SP signals, which it then puts through a black box to calculate a 
controller output. That controller output is sent to an actuator which moves to
actually control the process.
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We are interested here in what the black box actually does, which is that it 
applies 1, 2 or 3 calculations to the SP and Measured PV signals. These 
calculations, called the “Modes of Control” include:

 Proportional (P)
 Integral (I)
 Derivative (D)

Here’s a simplified block diagram of what the PID controller does:

It is really very simple in operation. The PV is subtracted from the SP to create 
the Error. The error is simply multiplied by one, two or all of the calculated P, 
I and D actions (depending which ones are turned on). Then the resulting “error 
x control actions” are added together and sent to the controller output.

These 3 modes are used in different combinations:

P – Sometimes used 
PI - Most often used
PID – Sometimes used
PD – rare as hen’s teeth but can be useful for controlling servomotors.
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So let’s now get an intuitive feel for how each control action works. In other 
words let’s understand what goes on in the P, I and D boxes in the block 
diagram above.

To do this we will be using our analogy of driving a car on a motorway, and 
using the principles of PID control to move the car into another lane.
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Proportional control

Here’s a diagram of the controller when we have enabled only P control:

In Proportional Only mode, the controller simply multiplies the Error by the 
Proportional Gain (Kp) to get the controller output. 

The Proportional Gain is the setting that we tune to get our desired 
performance from a “P only” controller.

We have already pointed out that driving a car with your eyes open is 
analogous to feedback control where you are the controller.  To take this 
analogy further, think about when you change lanes on the motorway. 
Everything is instinctive of course, but if you analyse your actions the course of 
events goes something like this:

You have to first choose an initial steering angle (in reality you slowly increase 
the steering angle – but for the sake of this thought experiment – assume that 
you quickly turn the steering wheel to an immediate initial angle)
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The car immediately starts to move towards the centre of the next lane.  Now 
you don’t want to wait until you are in the centre of the next lane to start 
correcting your steering, so what you intuitively do is reduce the steering angle 
as you get closer to your target position in the next lane. 

i.e. as your “position error” reduces, so does your “control action”.   Refer to 
the diagram of the P-Only controller above if this is not intuitive to you: as the 
error reduces, so must the controller output.

So the safest approach to changing lane successfully is to start with a small 
angle and slowly reduce it as you get closer to the next lane.

The problem with this is that – if you are in a hurry to get into that lane and 
you choose a really conservative (i.e. small) angle initially, you will take a long 
time to get there.

It is the same with a proportional controller – a small proportional gain (Kp in 
the diagram) is the safest way to get to setpoint – but your controller 
performance will be slow.

Improving your lane changing performance

OK so you need to get into the outside lane before the approaching Porsche 
slams into your rear. You wrench the wheel to a really steep angle, and start  
correcting as you get closer, but , holy crap, the your momentum has taken you 
over the centre of the next lane and you are rapidly approaching the opposite 
side of the road. Because you are consistent (just as a PID controller is), you 
wrench the wheel in the opposite direction just as hard as before, and guess 
what, now you’ve over shot back to the other side of the lane. Before you know 
it you’ve gone unstable! You are in a vicious cycle of lurching from one side of 
the lane to the other and back again.

That’s why too much P gain in a control loop sends it unstable: the actuator
doesn’t back off quick enough, you overshoot, and then make the exact same 
mistake going the other way, and on and on.

So the trick is to find a P gain that is high enough to give you the speed of 
response that you need, but not so high that you go unstable.

So why don’t all control loops use a P only controller that is beautifully tuned 
not to overshoot the setpoint and leave it at that?

The answer is “disturbances”.  
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Disturbances in a control loop require more that just P

So being a good driver you have found the perfect angle for changing lanes nice 
and quickly – but without going unstable. You are driving along feeling pretty 
content with yourself. Every time you change a lane you move the wheels to 
just the correct initial angle, and as you drift over to the next lane you start 
reducing your angle the closer you get to your final position. As your ‘position 
error’ goes to zero, your steering angle goes to zero too, and you end up in 
exactly the right position every time. AC/DC is on the car stereo and life is 
good…

But then you notice a sign warning of extreme crosswinds for the next 10km 
just as you decide to change lanes again.

You turn your wheel to the right - to your pre calculated initial angle - and find 
that the car only moves a little to the right before continuing straight on. The 
cross wind is so strong that as you were moving closer the target lane and 
reduced your steering angle, the smaller steering angle was being fully 
counteracted by the strong crosswind, you are still moving in a straight line 
although you are steering slightly to the right.

The result is that you are offset from your target position by a fixed amount 
(the position error). And because the rules are that the steering angle must be 
proportional to the position error, (we are behaving as a P controller 
remember) you are a bit stuck. You can’t change the steering angle because 
the error isn’t changing – and the steering angle only changes when the error 
changes…

We need some new rules for steering this thing!

What would happen in practice is we would use trial and error under these new 
cross wind conditions to get the initial angle just right - so that once again we 
end up in the perfect position. Lets assume that we ‘bias’ our steering angle in 
this way to take account of the crosswinds.

But then there is a downhill and we start speeding up, and find that our pre 
chosen angle over shoots (because the faster we are going the faster we will 
move across the highway). So we try trial and error again, and just as we get 
the steering angle bias correct for our new speed, the gradient changes and we 
start slowing down. What a bummer! It’s time to “bias” our angle again.

Let’s think about what is happening here – we have a “P only” control loop that 
was working beautifully, until some disturbances started hitting us. We had to 
manually bias our initial steering angle each time the disturbance changed.
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This is analogous to a “P only” control loop where we are continually changing 
the P gain to cope with changing disturbances. Not an optimal situation. We 
call this changing of the gain “Manual Reset” because we have to manually 
reset the gain whenever a disturbance changes.

Wouldn’t it be nice if we could “automatically reset” the gain?
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Integral Action to the rescue

Guess what… Integral action is also called “Automatic Reset”. Hmm guess what 
it does?

That’s right it automatically ‘resets’ the bias of the gain until the error is zero.

Back to our car with human controller.

So you are driving along with your wheels at a fixed steering angle, but because 
of the strong crosswind you are moving straight ahead. But you want to be 
moving sideways to your target position in the next line. What do you do? You 
do exactly what the Integral term in a PID controller does:

You start to increase your steering angle, and you keep increasing it until 
you start moving sideways.

This is where integral action is used to overcome the deficiencies of 
proportional action. Proportional action is simply the “P Gain” multiplied by 
the error. If the error is holding constant, but you aren’t at your target 
setpoint yet, you will be stuck. This is called an offset, and is the problem with 
P only control.

The addition of Integral action overcomes this deficiency. If there is an error 
between the SP and the PV; integral action will start to ramp up the controller 
output until things start moving again. 

Mathematically, it “increases the controller output by the Integral of the 
error”. What does this mean? Remember our definition of Integration as: 

The integral of a signal is the sum of all the instantaneous values that the 
signal has been, from whenever you started counting until you stop counting.

Translating this to a control system, it means that the integral action will 
simply start adding up all the error values, resulting in a ramping signal if the 
error is non-zero. Of course to make sure that you ramp the error just enough, 
you need to very carefully tune the “I constant” – but that is what the PID 
Tuning Blueprint is for.

Pretty straightforward eh?

So now we have pretty good control of our car steering. We have a P term 
which immediately looks at the instantaneous error between where we are and 

http://www.pidtuning.net/?utm_source=idiotsguide&utm_medium=ebook&utm_campaign=blueprint
http://www.pidtuning.net/?utm_source=idiotsguide&utm_medium=ebook&utm_campaign=blueprint
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where we want to be and provides us with a good initial angle to turn our 
wheels to.

As we get closer to our target position, the P action reduces the steering angle 
as the error decreases.

In parallel with the P action, the “I action” starts to ‘bias the steering angle’ 
by continually adding to the steering angle as long as there is a position error. 
When there are no disturbances, the integral action has the effect of simply 
making the steering angle a bit steeper, improving our ‘controller 
performance’ by reducing the amount of time it takes to get to our destination.

However where our “I action” makes a big difference is where we have a 
disturbance, such as crosswind. In that situation, our “I action” continues to 
ramp up our steering angle until we have enough angle to ‘break through’ the 
crosswind and continue to our destination.

The Diagram below that shows how the algorithm in a PI controller  is 
calculated.

Adjusting the Integral Action
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The way to adjust how much Integral Action you have is by adjusting a term 
called “minutes per repeat”. Not a very intuitive name is it?

So where does this strange name come from? It is a measure of how long it will 
take for the Integral Action to match the Proportional Action. 

In other words, if the output of the proportional box on the diagram above is 
20%, the repeat time is the time it will take for the output of the Integral box 
to get to 20% too. 

And the important point to note is that the “bigger” integral action, the 
quicker it will get this 20% value. That is, it will take fewer minutes to get 
there, so the “minutes per repeat” value will be smaller.

In other words the smaller the “minutes per repeat” is the bigger the integral 
action.

To make things a bit more intuitive for hairy arsed engineers like you and me a 
lot of controllers use an alternative unit of “repeats per minute” which is 
obviously the inverse of “minutes per repeat”. 

The nice thing about “repeats per minute” is that the bigger it is - the bigger 
the resulting Integral action is. 



An Idiot’s Guide to The PID Algorithm

23

© 2008 Finn Peacock – www.PID-Tuning.com

Derivative Action – predicting the future

OK, so the combination of P and I action seems to cover all the bases and do a 
pretty good job of controlling our system. That is the reason that PI controllers 
are the most prevalent. They do the job well enough and keep things simple. 
Great.

But engineers being engineers are always looking to tweak performance.

Imagine you are back in your car. You are in a rush to get back home before 
the football starts. So you put your foot down. After a while you need to 
change lanes again to pass some slow-coach.  You move your wheels to the pre-
set angle that worked so well earlier. However, because you are going faster, 
you start to move across the lane quicker. You end up overshooting the target 
lane and have to turn the wheels in the other direction to get back on track. 
You may get into the target lane eventually, but the maneuver wasn’t as slick 
as you had come to expect.

Imagine if, immediately after you had turned the wheels, the car had (Knight 
Rider style) worked out that you were moving across the lanes a bit too fast 
and that at this rate you would overshoot the target unless the angle was 
reduced. Imagine if the car had then taken it upon itself to correct your 
steering angle, reducing it so that you had minimal, if any, overshoot.

Well that’s the idea behind Derivative action. As you might have guessed, 
derivative action uses the rate-of-change of the error to calculate its 
contribution to the controller output. So let’s think through how that actually 
works in the above example.

When the steering wheel is turned, the position-error of the car starts to 
reduce rather quickly as you get closer to the target lane. In other words, the 
rate of change of the error is large and negative. This manifests itself as a 
negative derivative action, which works to reduce the steering angle which in 
turn will reduce the overshoot. The trick, of course is to have just enough D to 
remove the overshoot (and that’s where proper tuning comes in – trial and 
error just doesn’t cut it).

So adding derivative action can allow you to have bigger P and I gains and still 
keep the loop stable, giving you a faster response and better loop 
performance.

If you think about it, Derivative action improves the controller action because 
it predicts what is yet to happen by projecting the current rate of change into 

http://www.pidtuning.net/?utm_source=idiotsguide&utm_medium=ebook&utm_campaign=blueprint
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the future. This means that it is not using the current measured value, but a 
future measured value. 

The units used for derivative action describe how far into the future you want 
to look. i.e. If derivative action is 20 seconds, the derivative term will project 
the current rate of change 20 seconds into the future.

The big problem with D control is that if you have noise on your signal (which 
looks like a bunch of spikes with steep sides) this confuses the hell out of the 
algorithm. It looks at the slope of the noise-spike and thinks:

“Holy crap! This process is changing quickly, lets pile on the D Action!!!”

And your control output jumps all over the place, messing up your control.

Of course you can try and filter the noise out, but my advice is that, unless PI 
control is really slow (even after tuning with this blueprint), don’t worry about 
switching D on.

Summing it all up

The Proportional action of a PID controller, simply gives you a controller output 
that is proportional to the instantaneous error. It will always leave you with a 
“steady state error” if there are disturbances in your system.  In other words if 
there are changing disturbances and you only have Proportional control, you 
will never get to your setpoint.

To remove this steady state error we can use Integral action, which keeps 
adding (integrating) all the values of the error over time to the controller 
output allowing it to overcome those pesky disturbances.

Derivative action allows us to have bigger P and I actions and still keep the loop 
stable. It does this by looking at the rate of change of the error and pulling the 
controller action back if it can see that this rate of change will overshoot the 
setpoint in the near future. The result (if carefully tuned) is a faster, better 
performing control loop. However noise on the measurement signal makes 
Derivative action very difficult to get right.

http://www.pidtuning.net/?utm_source=idiotsguide&utm_medium=ebook&utm_campaign=blueprint

